Anisotropic cutting mechanisms on the surface quality in ultra-precision machining of R-plane sapphire

Yinhui Wang, Zhiqiang Liang*, Wenxiang Zhao, Xibin Wang, Hao Wang

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

5 引用 (Scopus)

摘要

The machined surface-layer quality of sapphire is influenced by its anisotropic properties. This work investigates the anisotropic cutting mechanisms on the surface quality of R-plane sapphire in ultra-precision machining. Plunge-cutting experiments were conducted to reveal ductile-to-brittle transition (DBT) depth. The groove topography and profiles show that the DBT depth with machining direction perpendicular to A-plane (type PER) can reach 200 nm, while the DBT depth with machining direction parallel to A-plane (type PAR) is <143.51 nm. However, the TEM images show a crack of 560 nm depth existing in the subsurface of type PER groove although its surface exhibits ductile characteristics. Besides, HRTEM results reveal that the dislocation defects determine the affected-layer depth for type PER groove, while the twinning defects dominate the affected-layer depth for type PAR groove. Moreover, overlap-cutting experiments highlight that the cutting force with type PER is larger than that with type PAR. MD simulation results indicate that the plastic deformation depth for type PER groove is higher than that for type PAR groove. In regards to the precision machining of sapphire, comprehensive evaluation of DBT depths, subsurface damage and cutting forces is essential for optimizing the process parameters.

源语言英语
文章编号156868
期刊Applied Surface Science
622
DOI
出版状态已出版 - 15 6月 2023

指纹

探究 'Anisotropic cutting mechanisms on the surface quality in ultra-precision machining of R-plane sapphire' 的科研主题。它们共同构成独一无二的指纹。

引用此