Analytical model for viscous and elastic Rayleigh-Taylor instabilities in convergent geometries at static interfaces

J. N. Gou, R. H. Zeng, C. Wang, Y. B. Sun*

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

3 引用 (Scopus)

摘要

Great attention has been attracted to study the viscous and elastic Rayleigh-Taylor instability in convergent geometries, especially for their low mode asymmetries that behave distinctively from the planar counterparts. However, most analyses have focused on the instability at static interfaces that excludes the studies of the Bell-Plesset effects and the elastic-plastic transition since they involve too complex mathematics. Herein, we perform detailed analyses on the dispersion relations by applying the viscous and elastic potential flow method to obtain their approximate growth rates compared with the exact ones to demonstrate: (i) The approximate growth rates based on potential flow method generally coincide with the exact ones. (ii) An alternative expression is proposed to overcome the discrepancy for the low mode asymmetries at fluid/fluid interface. (iii) Extra care must be taken in solids since the maximum discrepancies occur at the n = 1 mode and at the mode proximate to the cutoff. This analytical method of great simplicity is essential to describe the dynamic interface by including the overall motion of the interface based on the static construction, while the exact analysis involves too complex mathematics to be extended by including the Bell-Plesset effects and the elastic-plastic properties. To sum up, the approximate analytical dispersion relations derived in convergent geometries, have the potential for dealing with dynamic interfaces where Bell-Plesset effects are combined with elastic-plastic transition.

源语言英语
文章编号075217
期刊AIP Advances
12
7
DOI
出版状态已出版 - 1 7月 2022

指纹

探究 'Analytical model for viscous and elastic Rayleigh-Taylor instabilities in convergent geometries at static interfaces' 的科研主题。它们共同构成独一无二的指纹。

引用此