Analytical conditions for bounded mean inter-satellite distances in the J2 problem

Tao Nie, Pini Gurfil, Shijie Zhang

科研成果: 期刊稿件文章同行评审

12 引用 (Scopus)

摘要

Finding satellite relative orbits that are resilient to differential gravitational perturbations has received much attention in the literature. In particular, detecting "invariant" relative orbits under the J2 perturbation was considered a solved problem. These "invariance" conditions result in constraints on the differential mean semimajor axis, inclination, and eccentricity. In this paper, it is shown that alternative conditions can be used to further reduce the drift among J2-perturbed satellites. These alternative conditions are found by investigating the secular part of the averaged intersatellite distance. Averaging is performed with respect to the mean anomaly and argument of perigee. A closed-form expression for the first-order J2-perturbed mean distanceis obtained. It is found that the mean relative distance squared drifts as a quadratic function of time. Four conditions for mean-distance boundedness are derived. Using simulations, it isshown that the new conditions can improve previously obtainedresults, inthe senseofreducing the residual intersatellite distance drift.

源语言英语
页(从-至)2144-2162
页数19
期刊Journal of Guidance, Control, and Dynamics
41
10
DOI
出版状态已出版 - 2018
已对外发布

指纹

探究 'Analytical conditions for bounded mean inter-satellite distances in the J2 problem' 的科研主题。它们共同构成独一无二的指纹。

引用此