An Organodiselenide Comediator to Facilitate Sulfur Redox Kinetics in Lithium–Sulfur Batteries

Meng Zhao, Xiang Chen, Xi Yao Li, Bo Quan Li, Jia Qi Huang*

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

260 引用 (Scopus)

摘要

Lithium–sulfur (Li–S) batteries are considered as promising next-generation energy storage devices due to their ultrahigh theoretical energy density, where soluble lithium polysulfides are crucial in the Li–S electrochemistry as intrinsic redox mediators. However, the poor mediation capability of the intrinsic polysulfide mediators leads to sluggish redox kinetics, further rendering limited rate performances, low discharge capacity, and rapid capacity decay. Here, an organodiselenide, diphenyl diselenide (DPDSe), is proposed to accelerate the sulfur redox kinetics as a redox comediator. DPDSe spontaneously reacts with lithium polysulfides to generate lithium phenylseleno polysulfides (LiPhSePSs) with improved redox mediation capability. The as-generated LiPhSePSs afford faster sulfur redox kinetics and increase the deposition dimension of lithium sulfide. Consequently, the DPDSe comediator endows Li–S batteries with superb rate performance of 817 mAh g−1 at 2 C and remarkable cycling stability with limited anode excess. Moreover, Li–S pouch cells with the DPDSe comediator achieve an actual initial energy density of 301 Wh kg−1 and 30 stable cycles. This work demonstrates a novel redox comediation strategy with an effective organodiselenide comediator to facilitate the sulfur redox kinetics under pouch cell conditions and inspires further exploration in mediating Li–S kinetics for practical high-energy-density batteries.

源语言英语
文章编号2007298
期刊Advanced Materials
33
13
DOI
出版状态已出版 - 1 4月 2021

指纹

探究 'An Organodiselenide Comediator to Facilitate Sulfur Redox Kinetics in Lithium–Sulfur Batteries' 的科研主题。它们共同构成独一无二的指纹。

引用此