An improved classified vector quantization for medical image

Wanjun Zhang, Huiqi Li, Xiaofei Long

科研成果: 书/报告/会议事项章节会议稿件同行评审

1 引用 (Scopus)
Plum Print visual indicator of research metrics
  • Citations
    • Citation Indexes: 1
  • Captures
    • Readers: 4
see details

摘要

With the development of medical device, high quality medical image is widely used. Image compression makes it convenient for image storage and transmission. Based on classified vector quantization, an improved vector quantization compression method using structural similarity index and genetic algorithm is proposed. The proposed method is tested using public database and comparison study shows that it is efficient for medical image compression.

源语言英语
主期刊名Proceedings of the 2015 10th IEEE Conference on Industrial Electronics and Applications, ICIEA 2015
出版商Institute of Electrical and Electronics Engineers Inc.
238-241
页数4
ISBN(电子版)9781467373173
DOI
出版状态已出版 - 20 11月 2015
活动10th IEEE Conference on Industrial Electronics and Applications, ICIEA 2015 - Auckland, 新西兰
期限: 15 6月 201517 6月 2015

出版系列

姓名Proceedings of the 2015 10th IEEE Conference on Industrial Electronics and Applications, ICIEA 2015

会议

会议10th IEEE Conference on Industrial Electronics and Applications, ICIEA 2015
国家/地区新西兰
Auckland
时期15/06/1517/06/15

指纹

探究 'An improved classified vector quantization for medical image' 的科研主题。它们共同构成独一无二的指纹。

引用此

Zhang, W., Li, H., & Long, X. (2015). An improved classified vector quantization for medical image. 在 Proceedings of the 2015 10th IEEE Conference on Industrial Electronics and Applications, ICIEA 2015 (页码 238-241). 文章 7334118 (Proceedings of the 2015 10th IEEE Conference on Industrial Electronics and Applications, ICIEA 2015). Institute of Electrical and Electronics Engineers Inc.. https://doi.org/10.1109/ICIEA.2015.7334118