TY - GEN
T1 - An exoskeleton force feedback master finger distinguishing contact and non-contact mode
AU - Fang, Honggen
AU - Xie, Zongwu
AU - Liu, Hong
AU - Lan, Tian
AU - Xia, Jinjun
PY - 2009
Y1 - 2009
N2 - In this paper, a new type of master finger in exoskeleton type has been developed to implement master-slave operation for DLR/HIT dexterous hand. The finger has three novel characteristics. Firstly, the exoskeleton mechanism uses "four-bar mechanism joint", which rotates about an instant center that coincides with joint center of operator's finger. Secondly, the master finger can distinguish the contact and non-contact mode. The two modes enable free motion and natural contact sensation between operator and master finger respectively. Thirdly, the master finger can exert forces in the direction of extension and flexion because it can make active motion in the two directions. In order to assure faster data transmission and near zero delay in master-slave operation, a digital signal processing/field programmable gate array (DSP/FPGA-FPGA) structure is proposed to control the master finger. The kernel of the hardware system consists of a peripheral component interface (PCI)-based DSP/FPGA board configured as high-level and a FPGA board configured as low-level. By utilizing low-voltage differential signaling (LVDS) serial data bus and PCI bus, the high-level can communicate with the low-level and PC. Using the principle of Virtual work, the relationship between driving torque and the force acting at the tip of master finger is acquired and validated by an experiment conducted to the operation of master finger and DLR/HIT dexterous finger. Experimental results also demonstrate that the master finger can augment telepresence.
AB - In this paper, a new type of master finger in exoskeleton type has been developed to implement master-slave operation for DLR/HIT dexterous hand. The finger has three novel characteristics. Firstly, the exoskeleton mechanism uses "four-bar mechanism joint", which rotates about an instant center that coincides with joint center of operator's finger. Secondly, the master finger can distinguish the contact and non-contact mode. The two modes enable free motion and natural contact sensation between operator and master finger respectively. Thirdly, the master finger can exert forces in the direction of extension and flexion because it can make active motion in the two directions. In order to assure faster data transmission and near zero delay in master-slave operation, a digital signal processing/field programmable gate array (DSP/FPGA-FPGA) structure is proposed to control the master finger. The kernel of the hardware system consists of a peripheral component interface (PCI)-based DSP/FPGA board configured as high-level and a FPGA board configured as low-level. By utilizing low-voltage differential signaling (LVDS) serial data bus and PCI bus, the high-level can communicate with the low-level and PC. Using the principle of Virtual work, the relationship between driving torque and the force acting at the tip of master finger is acquired and validated by an experiment conducted to the operation of master finger and DLR/HIT dexterous finger. Experimental results also demonstrate that the master finger can augment telepresence.
UR - http://www.scopus.com/inward/record.url?scp=70350443585&partnerID=8YFLogxK
U2 - 10.1109/AIM.2009.5229726
DO - 10.1109/AIM.2009.5229726
M3 - Conference contribution
AN - SCOPUS:70350443585
SN - 9781424428533
T3 - IEEE/ASME International Conference on Advanced Intelligent Mechatronics, AIM
SP - 1059
EP - 1064
BT - 2009 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, AIM 2009
T2 - 2009 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, AIM 2009
Y2 - 14 July 2009 through 17 July 2009
ER -