An Efficient Detection Framework for Aerial Imagery Based on Uniform Slicing Window

Xin Yang, Yong Song*, Ya Zhou, Yizhao Liao, Jinqi Yang, Jinxiang Huang, Yiqian Huang, Yashuo Bai

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

2 引用 (Scopus)

摘要

Drone object detection faces numerous challenges such as dense clusters with overlapping, scale diversity, and long-tail distributions. Utilizing tiling inference through uniform sliding window is an effective way of enlarging tiny objects and meanwhile efficient for real-world applications. However, merely partitioning input images may result in heavy truncation and an unexpected performance drop in large objects. Therefore, in this work, we strive to develop an improved tiling detection framework with both competitive performance and high efficiency. First, we formulate the tiling inference and training pipeline with a mixed data strategy. To avoid truncation and handle objects at all scales, we simultaneously perform global detection on the original image and local detection on corresponding sub-patches, employing appropriate patch settings. Correspondingly, the training data includes both original images and the patches generated by random online anchor-cropping, which can ensure the effectiveness of patches and enrich the image scenarios. Furthermore, a scale filtering mechanism is applied to assign objects at diverse scales to global and local detection tasks to keep the scale invariance of a detector and obtain optimal fused predictions. As most of the additional operations are performed in parallel, the tiling inference remains highly efficient. Additionally, we devise two augmentations customized for tiling detection to effectively increase valid annotations, which can generate more challenging drone scenarios and simulate the practical cluster with overlapping, especially for rare categories. Comprehensive experiments on both public drone benchmarks and our customized real-world images demonstrate that, in comparison to other drone detection frameworks, the proposed tiling framework can significantly improve the performance of general detectors in drone scenarios with lower additional computational costs.

源语言英语
文章编号4122
期刊Remote Sensing
15
17
DOI
出版状态已出版 - 9月 2023

指纹

探究 'An Efficient Detection Framework for Aerial Imagery Based on Uniform Slicing Window' 的科研主题。它们共同构成独一无二的指纹。

引用此