TY - GEN
T1 - An Effective and Efficient Re-ranking Framework for Social Image Search
AU - Lu, Bo
AU - Yuan, Ye
AU - Cheng, Yurong
AU - Wang, Guoren
AU - Duan, Xiaodong
N1 - Publisher Copyright:
© 2020, Springer Nature Switzerland AG.
PY - 2020
Y1 - 2020
N2 - With the rapidly increasing popularity of social media websites, large numbers of images with user-annotated tags are uploaded by web users. Developing automatic techniques to retrieval such massive social images attracts much attention of researchers. The method of social image search returns top-k images according to several keywords input by users. However, the returned results by existing methods are usually irrelevant or lack of diversity, which cannot satisfy user’s veritable intention. In this paper, we propose an effective and efficient re-ranking framework for social image search, which can quickly and accurately return ranking results. We not only consider the consistency of visual content of images and semantic interpretations of tags, but also maximize the coverage of the user’s query demand. Specifically, we first build a social relationship graph by exploring the heterogeneous attribute information of social networks. For a given query, to ensure the effectiveness, we execute an efficient keyword search algorithm over the social relationship graph, and obtain top-k relevant candidate results. Moreover, we propose a novel re-ranking optimization strategy to refine the candidate results. Meanwhile, we develop an index to accelerate the optimization process, which ensures the efficiency of our framework. Extensive experimental conducts on real-world datasets demonstrate the effectiveness and efficiency of proposed re-ranking framework.
AB - With the rapidly increasing popularity of social media websites, large numbers of images with user-annotated tags are uploaded by web users. Developing automatic techniques to retrieval such massive social images attracts much attention of researchers. The method of social image search returns top-k images according to several keywords input by users. However, the returned results by existing methods are usually irrelevant or lack of diversity, which cannot satisfy user’s veritable intention. In this paper, we propose an effective and efficient re-ranking framework for social image search, which can quickly and accurately return ranking results. We not only consider the consistency of visual content of images and semantic interpretations of tags, but also maximize the coverage of the user’s query demand. Specifically, we first build a social relationship graph by exploring the heterogeneous attribute information of social networks. For a given query, to ensure the effectiveness, we execute an efficient keyword search algorithm over the social relationship graph, and obtain top-k relevant candidate results. Moreover, we propose a novel re-ranking optimization strategy to refine the candidate results. Meanwhile, we develop an index to accelerate the optimization process, which ensures the efficiency of our framework. Extensive experimental conducts on real-world datasets demonstrate the effectiveness and efficiency of proposed re-ranking framework.
UR - http://www.scopus.com/inward/record.url?scp=85092076143&partnerID=8YFLogxK
U2 - 10.1007/978-3-030-59419-0_22
DO - 10.1007/978-3-030-59419-0_22
M3 - Conference contribution
AN - SCOPUS:85092076143
SN - 9783030594183
T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
SP - 356
EP - 371
BT - Database Systems for Advanced Applications - 25th International Conference, DASFAA 2020, Proceedings
A2 - Nah, Yunmook
A2 - Cui, Bin
A2 - Lee, Sang-Won
A2 - Yu, Jeffrey Xu
A2 - Moon, Yang-Sae
A2 - Whang, Steven Euijong
PB - Springer Science and Business Media Deutschland GmbH
T2 - 25th International Conference on Database Systems for Advanced Applications, DASFAA 2020
Y2 - 24 September 2020 through 27 September 2020
ER -