摘要
The discontinuous Galerkin (DG) method is combined with the augmented electric field integral equation (AEFIE). AEFIE is proved to be stable in the low-frequency regime. The DG method admits non-conformal elements by using square-integrable, basis and test functions during the discretization. The resultant AEFIE-DG formulation is thus suitable solving the low frequency problems with non-conformal mesh. Numerical results are carried out to validate the proposed method.
源语言 | 英语 |
---|---|
主期刊名 | ICCEM 2016 - 2016 IEEE International Conference on Computational Electromagnetics |
出版商 | Institute of Electrical and Electronics Engineers Inc. |
页 | 106-108 |
页数 | 3 |
ISBN(电子版) | 9781467396783 |
DOI | |
出版状态 | 已出版 - 11 10月 2016 |
活动 | 2016 IEEE International Conference on Computational Electromagnetics, ICCEM 2016 - Guangzhou, 中国 期限: 23 2月 2016 → 25 2月 2016 |
出版系列
姓名 | Call for Papers - ICCEM 2016: 2016 IEEE International Conference on Computational Electromagnetics |
---|
会议
会议 | 2016 IEEE International Conference on Computational Electromagnetics, ICCEM 2016 |
---|---|
国家/地区 | 中国 |
市 | Guangzhou |
时期 | 23/02/16 → 25/02/16 |
指纹
探究 'An augmented EFIE with discontinuous Galerkin discretization' 的科研主题。它们共同构成独一无二的指纹。引用此
Xu, K. J., Pan, X. M., & Sheng, X. Q. (2016). An augmented EFIE with discontinuous Galerkin discretization. 在 ICCEM 2016 - 2016 IEEE International Conference on Computational Electromagnetics (页码 106-108). 文章 7588647 (Call for Papers - ICCEM 2016: 2016 IEEE International Conference on Computational Electromagnetics). Institute of Electrical and Electronics Engineers Inc.. https://doi.org/10.1109/COMPEM.2016.7588647