An Anomalous Traffic Detection Approach for the Private Network Based on Self-learning Model

Weijie Han*, Jingfeng Xue, Fuquan Zhang, Yingfeng Zhang

*此作品的通讯作者

科研成果: 书/报告/会议事项章节会议稿件同行评审

摘要

Although being isolated from the external network, the private network is still faced with some security threats, such as violations communications, malware attacks, and illegal operations. It is an attractive approach to recognize these security threats by discovering the underlying anomalous traffic. By studying the anomalous traffic detection technologies, an anomalous traffic detection approach is developed by capturing and analyzing the network packets, detecting the anomaly traffic that occurs in the network, and then detects anomalous behaviors of the network timely. In order to enhance its effectiveness and efficiency, a self-learning model is proposed and deployed in the detection approach. Finally, we conduct necessary evaluations about the proposed approach. The test results show that the approach can reach a good effect for detecting the unknown anomalous traffic.

源语言英语
主期刊名Machine Learning for Cyber Security - Third International Conference, ML4CS 2020, Proceedings
编辑Xiaofeng Chen, Hongyang Yan, Qiben Yan, Xiangliang Zhang
出版商Springer Science and Business Media Deutschland GmbH
26-34
页数9
ISBN(印刷版)9783030622220
DOI
出版状态已出版 - 2020
活动3rd International Conference on Machine Learning for Cyber Security, ML4CS 2020 - Guangzhou, 中国
期限: 8 10月 202010 10月 2020

出版系列

姓名Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
12486 LNCS
ISSN(印刷版)0302-9743
ISSN(电子版)1611-3349

会议

会议3rd International Conference on Machine Learning for Cyber Security, ML4CS 2020
国家/地区中国
Guangzhou
时期8/10/2010/10/20

指纹

探究 'An Anomalous Traffic Detection Approach for the Private Network Based on Self-learning Model' 的科研主题。它们共同构成独一无二的指纹。

引用此