TY - JOUR
T1 - All-In-One Escherichia coli Viability Assay for Multi-dimensional Detection of Uncomplicated Urinary Tract Infections
AU - Wu, Wenshuai
AU - Zhao, Qianbin
AU - Cai, Gaozhe
AU - Zhang, Boran
AU - Suo, Yuanjie
AU - Liu, Yang
AU - Jin, Wei
AU - Mu, Ying
N1 - Publisher Copyright:
© 2022 American Chemical Society. All rights reserved.
PY - 2022/12/27
Y1 - 2022/12/27
N2 - The urinary tract infections by antibiotic-resistant bacteria have been a serious public health problem and increase the healthcare costs. The conventional technologies of diagnosis and antimicrobial susceptibility testing (AST) relying on multiple culture-based assays are time-consuming and labor-intensive and thus compel the empirical antimicrobial therapies to be prescribed, fueling the prevalence of antimicrobial resistance. Herein, we propose an all-in-one Escherichia coli viability assay in an enclosed 3D microwell array chip, termed digital β-d-glucuronidase (GUS)-AST assay. It employs GUS, a specific metabolism-related enzyme, to convert the presence of E. coli into bright fluorescence. The random distribution of single bacteria in microwell array enables to quantify the E. coli concentrations by counting the positive microwells. We incorporate the most probable number with digital quantification to lower the limit of detection and expand the dynamic range to 7 orders. The digital GUS-AST assay is able to indicate the potency of antibiotics and determine the minimum inhibitory concentrations. A streamlined procedure of urine removal, bacterial separation, and digital GUS-AST is established to perform the direct analysis of bacteria population in urine. The sample-to-result workflow can be finished in 4.5 h with a limit of detection of 39 CFU/mL. With further development for additional pathogens and multiple antibiotic conditions, the digital GUS-AST assay could help physicians to prescribe timely targeted therapies for better patient outcomes and the minimum emergence of resistant bacteria.
AB - The urinary tract infections by antibiotic-resistant bacteria have been a serious public health problem and increase the healthcare costs. The conventional technologies of diagnosis and antimicrobial susceptibility testing (AST) relying on multiple culture-based assays are time-consuming and labor-intensive and thus compel the empirical antimicrobial therapies to be prescribed, fueling the prevalence of antimicrobial resistance. Herein, we propose an all-in-one Escherichia coli viability assay in an enclosed 3D microwell array chip, termed digital β-d-glucuronidase (GUS)-AST assay. It employs GUS, a specific metabolism-related enzyme, to convert the presence of E. coli into bright fluorescence. The random distribution of single bacteria in microwell array enables to quantify the E. coli concentrations by counting the positive microwells. We incorporate the most probable number with digital quantification to lower the limit of detection and expand the dynamic range to 7 orders. The digital GUS-AST assay is able to indicate the potency of antibiotics and determine the minimum inhibitory concentrations. A streamlined procedure of urine removal, bacterial separation, and digital GUS-AST is established to perform the direct analysis of bacteria population in urine. The sample-to-result workflow can be finished in 4.5 h with a limit of detection of 39 CFU/mL. With further development for additional pathogens and multiple antibiotic conditions, the digital GUS-AST assay could help physicians to prescribe timely targeted therapies for better patient outcomes and the minimum emergence of resistant bacteria.
UR - http://www.scopus.com/inward/record.url?scp=85144477985&partnerID=8YFLogxK
U2 - 10.1021/acs.analchem.2c03604
DO - 10.1021/acs.analchem.2c03604
M3 - Article
AN - SCOPUS:85144477985
SN - 0003-2700
VL - 94
SP - 17853
EP - 17860
JO - Analytical Chemistry
JF - Analytical Chemistry
IS - 51
ER -