Aligned/unaligned conducting polymer cryogels with three-dimensional macroporous architectures from ice-segregation-induced self-assembly of PEDOT-PSS

Xuetong Zhang*, Chunyan Li, Yunjun Luo

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

79 引用 (Scopus)

摘要

Porous conducting polymers are of great interest because of the huge potential to combine high surface areas in the dry state with physical properties relevant to organic electronics. Aligned or unaligned conducting polymer cryogels with 3D macroporous architectures have been prepared using the ice-segregation-induced self-assembly (ISISA) of different poly(3,4- ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT-PSS) freezing precursors as a dispersion or a formed hydrogel. The chemical composition and molecular structure of the resulting conducting polymer cryogels have been investigated by X-ray photoelectron spectroscopy and Raman spectroscopy, respectively. The morphologies of the PEDOT-PSS cryogels, together with their textural structures, have been revealed by scanning electron microscopy, mercury porosimetry, and nitrogen sorption tests. Processing PEDOT-PSS via ISISA endows the conducting polymers with novel properties, as demonstrated by a series of X-ray diffraction, differential scanning calorimetry, and electrical conductivity tests. These conducting polymer cryogels with aligned/unaligned macroporous architectures suggest the potential in the development of electronic components, tissue engineering, and next-generation catalytic and separation supports.

源语言英语
页(从-至)1915-1923
页数9
期刊Langmuir
27
5
DOI
出版状态已出版 - 1 3月 2011

指纹

探究 'Aligned/unaligned conducting polymer cryogels with three-dimensional macroporous architectures from ice-segregation-induced self-assembly of PEDOT-PSS' 的科研主题。它们共同构成独一无二的指纹。

引用此