TY - JOUR
T1 - Aircraft type recognition in remote sensing images
T2 - Bilinear discriminative extreme learning machine framework
AU - Zhao, Baojun
AU - Tang, Wei
AU - Pan, Yu
AU - Han, Yuqi
AU - Wang, Wenzheng
N1 - Publisher Copyright:
© 2021 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2021/9/1
Y1 - 2021/9/1
N2 - Small inter-class and massive intra-class changes are important challenges in aircraft model recognition in the field of remote sensing. Although the aircraft model recognition algorithm based on the convolutional neural network (CNN) has excellent recognition performance, it is limited by sample sets and computing resources. To solve the above problems, we propose the bilinear discriminative extreme learning machine (ELM) network (BD-ELMNet), which integrates the advantages of the CNN, autoencoder (AE), and ELM. Specifically, the BD-ELMNet first executes the convolution and pooling operations to form a convolutional ELM (ELMConvNet) to extract shallow features. Furthermore, the manifold regularized ELM-AE (MRELM-AE), which can simultaneously consider the geometrical structure and discriminative information of aircraft data, is developed to extract discriminative features. The bilinear pooling model uses the feature association information for feature fusion to enhance the substantial distinction of features. Compared with the backpropagation (BP) optimization method, BD-ELMNet adopts a layer-by-layer training method without repeated adjustments to effectively learn discriminant features. Experiments involving the application of several methods, including the proposed method, to the MTARSI benchmark demonstrate that the proposed aircraft type recognition method outperforms the state-of-the-art methods.
AB - Small inter-class and massive intra-class changes are important challenges in aircraft model recognition in the field of remote sensing. Although the aircraft model recognition algorithm based on the convolutional neural network (CNN) has excellent recognition performance, it is limited by sample sets and computing resources. To solve the above problems, we propose the bilinear discriminative extreme learning machine (ELM) network (BD-ELMNet), which integrates the advantages of the CNN, autoencoder (AE), and ELM. Specifically, the BD-ELMNet first executes the convolution and pooling operations to form a convolutional ELM (ELMConvNet) to extract shallow features. Furthermore, the manifold regularized ELM-AE (MRELM-AE), which can simultaneously consider the geometrical structure and discriminative information of aircraft data, is developed to extract discriminative features. The bilinear pooling model uses the feature association information for feature fusion to enhance the substantial distinction of features. Compared with the backpropagation (BP) optimization method, BD-ELMNet adopts a layer-by-layer training method without repeated adjustments to effectively learn discriminant features. Experiments involving the application of several methods, including the proposed method, to the MTARSI benchmark demonstrate that the proposed aircraft type recognition method outperforms the state-of-the-art methods.
KW - Aircraft recognition
KW - Extreme learning machine
KW - Feature learning
UR - http://www.scopus.com/inward/record.url?scp=85113719143&partnerID=8YFLogxK
U2 - 10.3390/electronics10172046
DO - 10.3390/electronics10172046
M3 - Article
AN - SCOPUS:85113719143
SN - 2079-9292
VL - 10
JO - Electronics (Switzerland)
JF - Electronics (Switzerland)
IS - 17
M1 - 2046
ER -