Aggregation of nano-sized alum-humic primary particles

Wen Zheng Yu, Ting Liu, John Gregory, Gui Bai Li, Hui Juan Liu*, Jiu Hui Qu

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

21 引用 (Scopus)
Plum Print visual indicator of research metrics
  • Citations
    • Citation Indexes: 20
  • Captures
    • Readers: 24
  • Social Media
    • Shares, Likes & Comments: 12
see details

摘要

In order to understand the mechanism of floc formation and growth in coagulation process, effect of zeta potential and surface characteristic of nano sized primary particles on coagulation efficiency were investigated by coagulation of humic acid with alum in this study. It was demonstrated that only 1 min rapid mixing was enough for adsorption of humic acid onto the precipitates of alum, and 15 min flocculation (slow mixing) only induced the formation and growth of flocs. The primary particle size of alum-humic flocs was near 50 nm and spherical. Mathematical model deduced from Derjaguin-Landau- Verwey-Overbeek (DLVO) theory showed that the formation of micro-flocs (or lag time) was determined by the square value of zeta potential of nano-sized primary particles and intensity of Brownian motion, which is closely related to water temperature. There was an absolute critical zeta potential, i.e. 13.5 mV in this study, determining whether two nano-sized particles could overcome the energy barrier consisted of Van der Waals force and electrical double layer repulsion force to allow floc formation to occur at a certain temperature. The Brownian motion determined whether the nano-sized primary particles (aluminum hydroxide precipitates with humic acid) had the opportunity to overcome the repulsive force and cement with each other. Low coagulation efficiency at high latitude area in winter is caused by low collision frequency, which is mainly attributed to the low intensity of Brownian motion at a low temperature. Furthermore, it was demonstrated that aggregation of micro-flocs or their clusters significantly depended on activated sites on the primary particles rather than the zeta potential of primary particles when sweep flocculation dominated the coagulation mechanism if the size of flocs was larger than some value.

源语言英语
页(从-至)44-49
页数6
期刊Separation and Purification Technology
99
DOI
出版状态已出版 - 8 10月 2012
已对外发布

指纹

探究 'Aggregation of nano-sized alum-humic primary particles' 的科研主题。它们共同构成独一无二的指纹。

引用此

Yu, W. Z., Liu, T., Gregory, J., Li, G. B., Liu, H. J., & Qu, J. H. (2012). Aggregation of nano-sized alum-humic primary particles. Separation and Purification Technology, 99, 44-49. https://doi.org/10.1016/j.seppur.2012.08.017