TY - GEN
T1 - Age of information-aware multi-tenant resource orchestration in network slicing
AU - Chen, Xianfu
AU - Wu, Celimuge
AU - Chen, Tao
AU - Wu, Nan
AU - Zhang, Honggang
AU - Ji, Yusheng
N1 - Publisher Copyright:
© 2019 IEEE.
PY - 2019/8
Y1 - 2019/8
N2 - To satisfy diverse services from mobile users (MUs) over a common network infrastructure, network slicing is envisioned as a promising technology. This paper considers radio access network (RAN)-only slicing, where the physical RAN is judiciously tailored to accommodate computation and communication functionalities. Multiple service providers (SPs, a.k.a., tenants) compete for a limited number of channels across the discrete scheduling slots in order to serve their respective subscribed MUs. From a MU perspective, the age of information of data packets from traditional mobile services and the energy consumption at mobile device are of practical importance. We characterize the interactions among the SPs via a stochastic game, in which a SP selfishly maximizes its own expected long-term payoff. To approximate the Nash equilibrium solutions, we build an abstract stochastic game exploring the local information of SPs. Furthermore, the decision-making process at a SP can be much simplified by linearly decomposing the per-SP Markov decision process, for which we derive a deep reinforcement learning based scheme to find the optimal abstract control policies. TensorFlow-based experiments validate our studies and show that the proposed scheme outperforms the three baselines and yields the best performance in average utility.
AB - To satisfy diverse services from mobile users (MUs) over a common network infrastructure, network slicing is envisioned as a promising technology. This paper considers radio access network (RAN)-only slicing, where the physical RAN is judiciously tailored to accommodate computation and communication functionalities. Multiple service providers (SPs, a.k.a., tenants) compete for a limited number of channels across the discrete scheduling slots in order to serve their respective subscribed MUs. From a MU perspective, the age of information of data packets from traditional mobile services and the energy consumption at mobile device are of practical importance. We characterize the interactions among the SPs via a stochastic game, in which a SP selfishly maximizes its own expected long-term payoff. To approximate the Nash equilibrium solutions, we build an abstract stochastic game exploring the local information of SPs. Furthermore, the decision-making process at a SP can be much simplified by linearly decomposing the per-SP Markov decision process, for which we derive a deep reinforcement learning based scheme to find the optimal abstract control policies. TensorFlow-based experiments validate our studies and show that the proposed scheme outperforms the three baselines and yields the best performance in average utility.
KW - Age of information
KW - Deep reinforcement learning
KW - Markov decision process
KW - Network slicing
KW - Stochastic game
UR - http://www.scopus.com/inward/record.url?scp=85075173441&partnerID=8YFLogxK
U2 - 10.1109/DASC/PiCom/CBDCom/CyberSciTech.2019.00182
DO - 10.1109/DASC/PiCom/CBDCom/CyberSciTech.2019.00182
M3 - Conference contribution
AN - SCOPUS:85075173441
T3 - Proceedings - IEEE 17th International Conference on Dependable, Autonomic and Secure Computing, IEEE 17th International Conference on Pervasive Intelligence and Computing, IEEE 5th International Conference on Cloud and Big Data Computing, 4th Cyber Science and Technology Congress, DASC-PiCom-CBDCom-CyberSciTech 2019
SP - 1001
EP - 1007
BT - Proceedings - IEEE 17th International Conference on Dependable, Autonomic and Secure Computing, IEEE 17th International Conference on Pervasive Intelligence and Computing, IEEE 5th International Conference on Cloud and Big Data Computing, 4th Cyber Science and Technology Congress, DASC-PiCom-CBDCom-CyberSciTech 2019
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 17th IEEE International Conference on Dependable, Autonomic and Secure Computing, IEEE 17th International Conference on Pervasive Intelligence and Computing, IEEE 5th International Conference on Cloud and Big Data Computing, 4th Cyber Science and Technology Congress, DASC-PiCom-CBDCom-CyberSciTech 2019
Y2 - 5 August 2019 through 8 August 2019
ER -