Aerodynamic optimal design for a glider with the supersonic airfoil based on the hybrid MIGA-SA method

F. P. Wang, Y. Xu*, G. Q. Zhang, K. Zhang

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

6 引用 (Scopus)

摘要

The aerodynamics of the glider with supersonic airfoil have been optimized numerically by combining the multi-island genetic algorithm (MIGA) with the simulated annealing (SA) methods. The corresponding results show that the improved hybrid MIGA-SA method can effectively solve the glider optimal design issues such as nonlinear, discontinuous, and multi-dimensional multimodal function etc. The glider optimal aerodynamic geometry can be quickly obtained by using of the hybrid MIGA-SA method under the conditions of huge design space and low calculating resource requirements. The optimized results have also indicated that the aerodynamic characteristics for the double curved airfoil are always superior to the hexagonal airfoil. The total length of wing span located closer to the constraint value can greatly increase the wing area, decrease wing load and benefit in gliding. The final optimal geometry can greatly extend the flight distance for the glider. These results could provide the reference data for designing the gliders with supersonic airfoil in aerodynamic geometry, control system as well as the structural optimal.

源语言英语
页(从-至)224-231
页数8
期刊Aerospace Science and Technology
92
DOI
出版状态已出版 - 9月 2019

指纹

探究 'Aerodynamic optimal design for a glider with the supersonic airfoil based on the hybrid MIGA-SA method' 的科研主题。它们共同构成独一无二的指纹。

引用此