摘要
Recently, numerous studies have been conducted to clarify the effects of corrugation wing on aerodynamic performances. The effects of the corrugation patterns and inclination angles were investigated using computational fluid dynamic method in gliding and hovering flight at Reynolds numbers of order 104. The instantaneous aerodynamic forces and the vorticity field around the wing models were provided to research the underlying mechanisms of aerodynamic effects of corrugated wing models. The findings can be concluded as follows: (1) the corrugation patterns have different effects on aerodynamic performance. The effect of noncamber corrugated wing is to decrease the lift and increase drag compared with a flat-plate when the angle of attack is less than 25° during gliding flight. The corrugated wing with a camber (corrug-2) after the valleys enhances the aerodynamic forces when angle of attack is higher than 35°. The valley inclination angle has limited effect on aerodynamic forces in gliding flight. (2) The lift forces of different corrugation patterns show significantly asymmetric during the upstroke and downstroke. The main reason leads to this phenomenon is the case that two sides of the corrugated wings are not symmetric around the pitching axis. The corrugated wing with only two valleys (corrug-1) changes the lift and drag very slightly. Corrug-2 produces larger peak during downstroke and smaller peak during upstroke. The increase in the inclination angle has limited effect on the aerodynamic forces. The possible reason for these small aerodynamic effects might be that the corrugated wings are smoothed by small vortices trapped in valleys. The main reason for the significant difference between plate and corrug-2 is that the recirculating vortices trapped in the saddle and hump reduce the pressure above the wing surface.
源语言 | 英语 |
---|---|
页(从-至) | 319-329 |
页数 | 11 |
期刊 | Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science |
卷 | 235 |
期 | 2 |
DOI | |
出版状态 | 已出版 - 1月 2021 |