摘要
Many crystalline molecular rotors have been developed in the past decades. However, manipulating the rotational gesture that intrinsically controls the physical performance of materials remains a challenge. Herein, we report a series of crystalline rotors whose rotational gestures can be modulated by modifying the structures of molecular stators. In these dynamic crystals, the ox2- (ox2- = oxalate anion) behave as molecular rotators performing axial-free rotation in cavities composed of five complex cations, [MII(en)3]2+ (en = ethylenediamine). The structure of [MII(en)3]2+ that serves as a molecular stator can be tuned by varying the metal center with different ionic radii, consequently altering the chemical environment around the molecular rotator. Owing to the quasi-transverse isotropy of ox2- and multiple hydrogen-bond interactions around it, the molecular rotator exhibits unusual motional malleability, i.e., it can rotate either longitudinally in the compound of ZnII, or with a tilt angle of 42° in the compound of FeII, or even laterally in the compound of CdII. The atypical dynamic behavior demonstrated here provides a new chance for the development of exquisite crystalline molecular rotors with advanced tunable functionalities.
源语言 | 英语 |
---|---|
页(从-至) | 8042-8048 |
页数 | 7 |
期刊 | Inorganic Chemistry |
卷 | 60 |
期 | 11 |
DOI | |
出版状态 | 已出版 - 7 6月 2021 |