Adaptive state of charge estimation of Lithium-ion battery based on battery capacity degradation model

Guodong Yang, Junqiu Li*, Zijian Fu, Lin Guo

*此作品的通讯作者

科研成果: 期刊稿件会议文章同行评审

24 引用 (Scopus)

摘要

For electric vehicles (EVs), accurate State of Charge (SoC) estimation of battery contributes to ensure battery safety and improve driving mileage. Therefore, its research has essential application value. However, accurate SoC estimation of the battery relies on precise battery model parameters and capacity. This paper mainly carries out three aspects of work. (1) A battery equivalent circuit model is established, and the Forgetting Factor Recursive Least Squares (FFRLS) method is used to realize online identification of model parameters. (2) Based on the Arrhenius equation, the inverse power law equation and the battery capacity degradation equation, the battery capacity degradation model under dynamic stress is established to achieve the online prediction of battery capacity. (3) Based on equivalent circuit model, battery capacity degradation model and Adaptive Extended Kalman Filtering (AEKF) algorithm, an adaptive SoC estimation method is proposed. Simulation results show that the maximum estimation error of battery capacity and SoC is less than 2.5% and 1.5% respectively.

源语言英语
页(从-至)514-519
页数6
期刊Energy Procedia
152
DOI
出版状态已出版 - 2018
活动2018 Applied Energy Symposium and Forum, Carbon Capture, Utilization and Storage, CCUS 2018 - Perth, 澳大利亚
期限: 27 6月 201829 6月 2018

指纹

探究 'Adaptive state of charge estimation of Lithium-ion battery based on battery capacity degradation model' 的科研主题。它们共同构成独一无二的指纹。

引用此