TY - JOUR
T1 - Adaptive real-time optimal energy management strategy based on equivalent factors optimization for plug-in hybrid electric vehicle
AU - Yang, Chao
AU - Du, Siyu
AU - Li, Liang
AU - You, Sixong
AU - Yang, Yiyong
AU - Zhao, Yue
N1 - Publisher Copyright:
© 2017 Elsevier Ltd
PY - 2017
Y1 - 2017
N2 - Plug-in hybrid electric vehicle (PHEV) is one of the most promising products to solve the problem about air pollution and energy crisis. Considering the characteristics of urban bus route, maybe a fixed-control-parameter control strategy for PHEV cannot perfectly match the complicated variation of driving conditions, and as a result the ideal vehicle fuel economy would not be obtained. Therefore, it is of great significance to develop an adaptive real-time optimal energy management strategy for PHEV by taking the segment characteristics of driving cycles into consideration. In this study, a novel energy management strategy for Plug-in hybrid electric bus (PHEB) is proposed, which optimizes the equivalent factor (EF) of each segment in the driving cycle. The proposed strategy includes an offline part and an online part. In the offline part, the driving cycles are divided into segments according to the actual positions of bus stops, the EF of each segment is optimized by linear weight particle swarm optimization algorithm with different initial states of charge (SOC). The optimization results of EF are then converted into a 2-dimensional look up table, which can be used to make real-time adjustments to online control strategy. In the online part, the optimal instantaneous energy distribution is obtained in this hybrid powertrain. Finally, the proposed strategy is verified with simulation and hardware in the loop tests, and three kinds of commonly used control strategies are adopted for comparison. Results show when the initial SOC is 90%, the fuel economy with the proposed strategy can be improved by 15.93% compared with that of baseline strategy, and when the initial SOC is 60%, this value is 16.02%. The proposed strategy may provide theoretical support for control optimization of PHEV.
AB - Plug-in hybrid electric vehicle (PHEV) is one of the most promising products to solve the problem about air pollution and energy crisis. Considering the characteristics of urban bus route, maybe a fixed-control-parameter control strategy for PHEV cannot perfectly match the complicated variation of driving conditions, and as a result the ideal vehicle fuel economy would not be obtained. Therefore, it is of great significance to develop an adaptive real-time optimal energy management strategy for PHEV by taking the segment characteristics of driving cycles into consideration. In this study, a novel energy management strategy for Plug-in hybrid electric bus (PHEB) is proposed, which optimizes the equivalent factor (EF) of each segment in the driving cycle. The proposed strategy includes an offline part and an online part. In the offline part, the driving cycles are divided into segments according to the actual positions of bus stops, the EF of each segment is optimized by linear weight particle swarm optimization algorithm with different initial states of charge (SOC). The optimization results of EF are then converted into a 2-dimensional look up table, which can be used to make real-time adjustments to online control strategy. In the online part, the optimal instantaneous energy distribution is obtained in this hybrid powertrain. Finally, the proposed strategy is verified with simulation and hardware in the loop tests, and three kinds of commonly used control strategies are adopted for comparison. Results show when the initial SOC is 90%, the fuel economy with the proposed strategy can be improved by 15.93% compared with that of baseline strategy, and when the initial SOC is 60%, this value is 16.02%. The proposed strategy may provide theoretical support for control optimization of PHEV.
KW - Driving cycle segmentation
KW - Energy management strategy
KW - Linear weight particle swarm optimization
KW - Plug-in hybrid electric vehicle
KW - Real-time optimization
UR - http://www.scopus.com/inward/record.url?scp=85021703406&partnerID=8YFLogxK
U2 - 10.1016/j.apenergy.2017.06.106
DO - 10.1016/j.apenergy.2017.06.106
M3 - Article
AN - SCOPUS:85021703406
SN - 0306-2619
VL - 203
SP - 883
EP - 896
JO - Applied Energy
JF - Applied Energy
ER -