TY - GEN
T1 - Active Visual Information Gathering for Vision-Language Navigation
AU - Wang, Hanqing
AU - Wang, Wenguan
AU - Shu, Tianmin
AU - Liang, Wei
AU - Shen, Jianbing
N1 - Publisher Copyright:
© 2020, Springer Nature Switzerland AG.
PY - 2020
Y1 - 2020
N2 - Vision-language navigation (VLN) is the task of entailing an agent to carry out navigational instructions inside photo-realistic environments. One of the key challenges in VLN is how to conduct a robust navigation by mitigating the uncertainty caused by ambiguous instructions and insufficient observation of the environment. Agents trained by current approaches typically suffer from this and would consequently struggle to avoid random and inefficient actions at every step. In contrast, when humans face such a challenge, they can still maintain robust navigation by actively exploring the surroundings to gather more information and thus make more confident navigation decisions. This work draws inspiration from human navigation behavior and endows an agent with an active information gathering ability for a more intelligent vision-language navigation policy. To achieve this, we propose an end-to-end framework for learning an exploration policy that decides i) when and where to explore, ii) what information is worth gathering during exploration, and iii) how to adjust the navigation decision after the exploration. The experimental results show promising exploration strategies emerged from training, which leads to significant boost in navigation performance. On the R2R challenge leaderboard, our agent gets promising results all three VLN settings, i.e., single run, pre-exploration, and beam search.
AB - Vision-language navigation (VLN) is the task of entailing an agent to carry out navigational instructions inside photo-realistic environments. One of the key challenges in VLN is how to conduct a robust navigation by mitigating the uncertainty caused by ambiguous instructions and insufficient observation of the environment. Agents trained by current approaches typically suffer from this and would consequently struggle to avoid random and inefficient actions at every step. In contrast, when humans face such a challenge, they can still maintain robust navigation by actively exploring the surroundings to gather more information and thus make more confident navigation decisions. This work draws inspiration from human navigation behavior and endows an agent with an active information gathering ability for a more intelligent vision-language navigation policy. To achieve this, we propose an end-to-end framework for learning an exploration policy that decides i) when and where to explore, ii) what information is worth gathering during exploration, and iii) how to adjust the navigation decision after the exploration. The experimental results show promising exploration strategies emerged from training, which leads to significant boost in navigation performance. On the R2R challenge leaderboard, our agent gets promising results all three VLN settings, i.e., single run, pre-exploration, and beam search.
KW - Active exploration
KW - Vision-language navigation
UR - http://www.scopus.com/inward/record.url?scp=85097280784&partnerID=8YFLogxK
U2 - 10.1007/978-3-030-58542-6_19
DO - 10.1007/978-3-030-58542-6_19
M3 - Conference contribution
AN - SCOPUS:85097280784
SN - 9783030585419
T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
SP - 307
EP - 322
BT - Computer Vision – ECCV 2020 - 16th European Conference, 2020, Proceedings
A2 - Vedaldi, Andrea
A2 - Bischof, Horst
A2 - Brox, Thomas
A2 - Frahm, Jan-Michael
PB - Springer Science and Business Media Deutschland GmbH
T2 - 16th European Conference on Computer Vision, ECCV 2020
Y2 - 23 August 2020 through 28 August 2020
ER -