Active bialkali photocathodes on free-standing graphene substrates

Hisato Yamaguchi*, Fangze Liu, Jeffrey DeFazio, Claudia W. Narvaez Villarrubia, Daniel Finkenstadt, Andrew Shabaev, Kevin L. Jensen, Vitaly Pavlenko, Michael Mehl, Sam Lambrakos, Gautam Gupta, Aditya D. Mohite, Nathan A. Moody

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

25 引用 (Scopus)

摘要

The hexagonal structure of graphene gives rise to the property of gas impermeability, motivating its investigation for a new application: protection of semiconductor photocathodes in electron accelerators. These materials are extremely susceptible to degradation in efficiency through multiple mechanisms related to contamination from the local imperfect vacuum environment of the host photoinjector. Few-layer graphene has been predicted to permit a modified photoemission response of protected photocathode surfaces, and recent experiments of single-layer graphene on copper have begun to confirm these predictions for single crystal metallic photocathodes. Unlike metallic photoemitters, the integration of an ultra-thin graphene barrier film with conventional semiconductor photocathode growth processes is not straightforward. A first step toward addressing this challenge is the growth and characterization of technologically relevant, high quantum efficiency bialkali photocathodes on ultra-thin free-standing graphene substrates. Photocathode growth on free-standing graphene provides the opportunity to integrate these two materials and study their interaction. Specifically, spectral response features and photoemission stability of cathodes grown on graphene substrates are compared to those deposited on established substrates. In addition, we observed an increase of work function for the graphene encapsulated bialkali photocathode surfaces, which is predicted by our calculations. The results provide a unique demonstration of bialkali photocathodes on free-standing substrates, and indicate promise towards our goal of fabricating high-performance graphene encapsulated photocathodes with enhanced lifetime for accelerator applications.

源语言英语
文章编号12
期刊npj 2D Materials and Applications
1
1
DOI
出版状态已出版 - 1 12月 2017
已对外发布

指纹

探究 'Active bialkali photocathodes on free-standing graphene substrates' 的科研主题。它们共同构成独一无二的指纹。

引用此