TY - GEN
T1 - ACMo
T2 - 35th AAAI Conference on Artificial Intelligence, AAAI 2021
AU - Huang, Xunpeng
AU - Xu, Runxin
AU - Zhou, Hao
AU - Wang, Zhe
AU - Liu, Zhengyang
AU - Li, Lei
N1 - Publisher Copyright:
Copyright © 2021, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved
PY - 2021
Y1 - 2021
N2 - Stochastic gradient descent (SGD) is a widely used method for its outstanding generalization ability and simplicity. Adaptive gradient methods have been proposed to further accelerate the optimization process. In this paper, we revisit existing adaptive gradient optimization methods with a new interpretation. Such new perspective leads to a refreshed understanding of the roles of second moments in stochastic optimization. Based on this, we propose Angle-Calibration Moment method (ACMo), a novel stochastic optimization method. It enjoys the benefits of second moments with only first moment updates. Theoretical analysis shows that ACMo is able to achieve the same convergence rate as mainstream adaptive methods. Experiments on a variety of CV and NLP tasks demonstrate that ACMo has a comparable convergence to state-of-the-art Adam-type optimizers, and even a better generalization performance in most cases. The code is available at https://github.com/Xunpeng746/ACMo.
AB - Stochastic gradient descent (SGD) is a widely used method for its outstanding generalization ability and simplicity. Adaptive gradient methods have been proposed to further accelerate the optimization process. In this paper, we revisit existing adaptive gradient optimization methods with a new interpretation. Such new perspective leads to a refreshed understanding of the roles of second moments in stochastic optimization. Based on this, we propose Angle-Calibration Moment method (ACMo), a novel stochastic optimization method. It enjoys the benefits of second moments with only first moment updates. Theoretical analysis shows that ACMo is able to achieve the same convergence rate as mainstream adaptive methods. Experiments on a variety of CV and NLP tasks demonstrate that ACMo has a comparable convergence to state-of-the-art Adam-type optimizers, and even a better generalization performance in most cases. The code is available at https://github.com/Xunpeng746/ACMo.
UR - http://www.scopus.com/inward/record.url?scp=85130092570&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85130092570
T3 - 35th AAAI Conference on Artificial Intelligence, AAAI 2021
SP - 7857
EP - 7864
BT - 35th AAAI Conference on Artificial Intelligence, AAAI 2021
PB - Association for the Advancement of Artificial Intelligence
Y2 - 2 February 2021 through 9 February 2021
ER -