Accelerating matrix/boundary precipitations to explore high-strength and high-ductile Co34Cr32Ni27Al3.5Ti3.5 multicomponent alloys through hot extrusion and annealing

Xiaoming Liu, Zongde Kou, Ruitao Qu, Weidong Song, Yijia Gu, Changshan Zhou, Qingwei Gao, Jiyao Zhang, Chongde Cao, Kaikai Song*, Vladislav Zadorozhnyy, Zequn Zhang, Jürgen Eckert

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

19 引用 (Scopus)

摘要

Annealing-regulated precipitation strengthening combined with cold-working is one of the most efficient strategies for resolving the conflict between strength and ductility in metals and alloys. However, precipitation control and grain refinement are mutually contradictory due to the excellent phase stability of multicomponent alloys. This work utilizes the high-temperature extrusion and annealing to optimize the microstructures and mechanical properties of the Co34Cr32Ni27Al3.5Ti3.5 multicomponent alloy. Hot extrusion effectively reduces grain sizes and simultaneously accelerates the precipitation of coherent L12 nanoparticles inside the face-centered cubic (FCC) matrix and grain boundary precipitations (i.e., submicron Cr-rich particles and L12-Ni3(Ti, Al) precipitates), resulting in strongly reciprocal interaction between dislocation slip and hierarchical-scale precipitates. Subsequent annealing regulates grain sizes, dislocations, twins, and precipitates, further allowing to tailor mechanical properties. The high yield strength is attributed to the coupled precipitation strengthening effects from nanoscale coherent L12 particles inside grains and submicron grain boundary precipitates under the support of pre-existing dislocations. The excellent ductility results from the synergistic activation of dislocations, stacking faults, and twins during plastic deformation. The present study provides a promising approach for regulating microstructures, especially defects, and enhancing the mechanical properties of multicomponent alloys.

源语言英语
页(从-至)62-83
页数22
期刊Journal of Materials Science and Technology
143
DOI
出版状态已出版 - 20 4月 2023

指纹

探究 'Accelerating matrix/boundary precipitations to explore high-strength and high-ductile Co34Cr32Ni27Al3.5Ti3.5 multicomponent alloys through hot extrusion and annealing' 的科研主题。它们共同构成独一无二的指纹。

引用此