TY - JOUR
T1 - Accelerated aging for after-treatment devices of diesel engine
T2 - Method, emission characteristics, and equivalence
AU - Lyu, Liqun
AU - Wang, Junfang
AU - Yin, Hang
AU - Ji, Zhongrui
AU - Tan, Jianwei
AU - Hao, Lijun
AU - Ge, Yunshan
N1 - Publisher Copyright:
© 2023 Elsevier Ltd
PY - 2024/2/1
Y1 - 2024/2/1
N2 - After-treatment devices of diesel engines effectively reduce exhaust emissions but deteriorate over time. Consequently, the China-VI emission regulation mandates a useful life of seven years or 700,000 km for after-treatment devices. Conventional engine bench aging methods, being costly and time-consuming, are inapplicable for long-term emission durability verification. This paper introduces an accelerated aging method based on the thermal accumulation and Arrhenius equation. Accelerated aging of four after-treatment devices of the same model at different temperatures and durations was carried out. Results revealed that barring the CDPF's PN filtration efficiency, the efficiencies of the DOC, SCR, and ASC catalysts declined with accelerated aging, especially under lower temperatures. Deterioration in conversion efficiencies of catalysts increased the NOx, CO, THC, and NH3 emissions under cold- and warm-WHTC tests. Considering that the equivalent durability mileage of the after-treatment devices under 150 h 650 °C accelerated aging condition is approximately 870,000 km, while the CO, THC, PN, NOx, and NH3 emission factors are 0.05 g/kWh, 0.21 g/kWh, 2.14 × 1010 #/kWh, 0.44 g/kWh, and 3.48 ppm, respectively, so the durability of the tested after-treatment devices could comply with the China-VI emission regulation. Although accelerated aging did not significantly affect PN emissions, it increased the balanced point temperature of CDPF and the proportion of sub-23 nm particles. If emission regulations further reduce the lower limit of PN measurement to 10 nm, it could negatively impact the emission durability of CDPF. In addition, comparing the 1000 h of conventional aging showed similar characteristics and results in NOx conversion efficiency and NOx emission, suggesting that the accelerated aging method is reliable. In conclusion, the accelerated aging method reduces the durability verification duration, providing a cost-effective regulatory tool for environmental protection authorities and guidance for manufacturers to optimize device performance and durability.
AB - After-treatment devices of diesel engines effectively reduce exhaust emissions but deteriorate over time. Consequently, the China-VI emission regulation mandates a useful life of seven years or 700,000 km for after-treatment devices. Conventional engine bench aging methods, being costly and time-consuming, are inapplicable for long-term emission durability verification. This paper introduces an accelerated aging method based on the thermal accumulation and Arrhenius equation. Accelerated aging of four after-treatment devices of the same model at different temperatures and durations was carried out. Results revealed that barring the CDPF's PN filtration efficiency, the efficiencies of the DOC, SCR, and ASC catalysts declined with accelerated aging, especially under lower temperatures. Deterioration in conversion efficiencies of catalysts increased the NOx, CO, THC, and NH3 emissions under cold- and warm-WHTC tests. Considering that the equivalent durability mileage of the after-treatment devices under 150 h 650 °C accelerated aging condition is approximately 870,000 km, while the CO, THC, PN, NOx, and NH3 emission factors are 0.05 g/kWh, 0.21 g/kWh, 2.14 × 1010 #/kWh, 0.44 g/kWh, and 3.48 ppm, respectively, so the durability of the tested after-treatment devices could comply with the China-VI emission regulation. Although accelerated aging did not significantly affect PN emissions, it increased the balanced point temperature of CDPF and the proportion of sub-23 nm particles. If emission regulations further reduce the lower limit of PN measurement to 10 nm, it could negatively impact the emission durability of CDPF. In addition, comparing the 1000 h of conventional aging showed similar characteristics and results in NOx conversion efficiency and NOx emission, suggesting that the accelerated aging method is reliable. In conclusion, the accelerated aging method reduces the durability verification duration, providing a cost-effective regulatory tool for environmental protection authorities and guidance for manufacturers to optimize device performance and durability.
KW - Accelerated aging
KW - After-treatment devices
KW - Diesel engine
KW - Emission characteristics
KW - Engine bench test
UR - http://www.scopus.com/inward/record.url?scp=85177213073&partnerID=8YFLogxK
U2 - 10.1016/j.apenergy.2023.122234
DO - 10.1016/j.apenergy.2023.122234
M3 - Article
AN - SCOPUS:85177213073
SN - 0306-2619
VL - 355
JO - Applied Energy
JF - Applied Energy
M1 - 122234
ER -