Ab initio electron-two-phonon scattering in GaAs from next-to-leading order perturbation theory

Nien En Lee, Jin Jian Zhou, Hsiao Yi Chen, Marco Bernardi*

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

28 引用 (Scopus)

摘要

Electron-phonon (e–ph) interactions are usually treated in the lowest order of perturbation theory. Here we derive next-to-leading order e–ph interactions, and compute from first principles the associated electron-two-phonon (2ph) scattering rates. The derivations involve Matsubara sums of two-loop Feynman diagrams, and the numerical calculations are challenging as they involve Brillouin zone integrals over two crystal momenta and depend critically on the intermediate state lifetimes. Using Monte Carlo integration together with a self-consistent update of the intermediate state lifetimes, we compute and converge the 2ph scattering rates, and analyze their energy and temperature dependence. We apply our method to GaAs, a weakly polar semiconductor with dominant optical-mode long-range e–ph interactions. We find that the 2ph scattering rates are as large as nearly half the value of the one-phonon rates, and that including the 2ph processes is necessary to accurately predict the electron mobility in GaAs from first principles.

源语言英语
文章编号1607
期刊Nature Communications
11
1
DOI
出版状态已出版 - 1 12月 2020
已对外发布

指纹

探究 'Ab initio electron-two-phonon scattering in GaAs from next-to-leading order perturbation theory' 的科研主题。它们共同构成独一无二的指纹。

引用此