A variational representation for random functionals on abstract Wiener spaces

Xicheng Zhang*

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

18 引用 (Scopus)

摘要

We extend to abstract Wiener spaces the variational representation E[e F] = exp (supv E[F(-+V) -||v\\2H]) , proved by Boue and Dupuis [1] on the classical Wiener space. Here F is any bounded measurable function on the abstract Wiener space (W, H,), and Ha denotes the space of .Ft-adapted H-valued random fields in the sense of Ustiinel and Zakai [11]. In particular, we simplify the proof of the lower bound given in [1, 3] by using the Clark-Ocone formula. As an application, a uniform Laplace principle is established.

源语言英语
页(从-至)475-490
页数16
期刊Kyoto Journal of Mathematics
49
3
DOI
出版状态已出版 - 2009
已对外发布

指纹

探究 'A variational representation for random functionals on abstract Wiener spaces' 的科研主题。它们共同构成独一无二的指纹。

引用此