摘要
Two-dimensional conductive metal-organic frameworks (2D-c-MOFs) have attracted extensive attention owing to their unique structures and physical-chemical properties. However, the planarly extended structure of 2D-c-MOFs usually limited the accessibility of the active sites. Herein, we designed a triptycene-based 2D vertically conductive MOF (2D-vc-MOF) by coordinating 2,3,6,7,14,15-hexahydroxyltriptycene (HHTC) with Cu2+. The vertically extended 2D-vc-MOF(Cu) possesses a weak interlayer interaction, which leads to a facile exfoliation to the nanosheet. Compared with the classical 2D-c-MOFs with planarly extended 2D structures, 2D-vc-MOF(Cu) exhibits a 100 % increased catalytic activity in terms of turnover number and a two-fold increased selectivity. Density functional theory (DFT) calculations further revealed that higher activity originated from the lower energy barriers of the vertically extended 2D structures during the CO2 reduction reaction process.
源语言 | 英语 |
---|---|
文章编号 | e202217958 |
期刊 | Angewandte Chemie - International Edition |
卷 | 62 |
期 | 11 |
DOI | |
出版状态 | 已出版 - 6 3月 2023 |