A transferable long-term lithium-ion battery aging trajectory prediction model considering internal resistance and capacity regeneration phenomenon

Yaodi Huang, Pengcheng Zhang, Jiahuan Lu, Rui Xiong*, Zhongmin Cai

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

8 引用 (Scopus)

摘要

Accurately predicting the remaining useful life (RUL) of lithium-ion batteries (LiBs) is crucial for improving battery management system design and ensuring device safety. However, achieving accurate long-term predictions of aging trajectories is challenging due to error accumulation in multi-step ahead forecasts. This study shows that considering future internal resistance (R), which is related to the aging process, and the capacity regeneration phenomenon (CRP) that occurs during aging can help reduce error accumulation. Specifically, we propose a hybrid method that incorporates future R and CRP to predict the aging trajectories and RULs of LiBs. Experiment results demonstrate: (1) for the same charging/discharging policies and battery types, the proposed method can accurately predict the aging trajectory and RUL using only the first 20 cycles’ data (approximately 5% of the complete data); (2) for different charging/discharging policies and battery types, with transfer learning, the proposed method can predict the aging trajectory and RUL using the first 40 cycles’ data. These results demonstrate that the proposed model is both accurate in long-term prediction and robust for estimating the aging trajectory and RUL across various datasets.

源语言英语
文章编号122825
期刊Applied Energy
360
DOI
出版状态已出版 - 15 4月 2024

指纹

探究 'A transferable long-term lithium-ion battery aging trajectory prediction model considering internal resistance and capacity regeneration phenomenon' 的科研主题。它们共同构成独一无二的指纹。

引用此