TY - JOUR
T1 - A Systematic Literature Review on Using Machine Learning Algorithms for Software Requirements Identification on Stack Overflow
AU - Ahmad, Arshad
AU - Feng, Chong
AU - Khan, Muzammil
AU - Khan, Asif
AU - Ullah, Ayaz
AU - Nazir, Shah
AU - Tahir, Adnan
N1 - Publisher Copyright:
© 2020 Arshad Ahmad et al.
PY - 2020
Y1 - 2020
N2 - Context. The improvements made in the last couple of decades in the requirements engineering (RE) processes and methods have witnessed a rapid rise in effectively using diverse machine learning (ML) techniques to resolve several multifaceted RE issues. One such challenging issue is the effective identification and classification of the software requirements on Stack Overflow (SO) for building quality systems. The appropriateness of ML-based techniques to tackle this issue has revealed quite substantial results, much effective than those produced by the usual available natural language processing (NLP) techniques. Nonetheless, a complete, systematic, and detailed comprehension of these ML based techniques is considerably scarce. Objective. To identify or recognize and classify the kinds of ML algorithms used for software requirements identification primarily on SO. Method. This paper reports a systematic literature review (SLR) collecting empirical evidence published up to May 2020. Results. This SLR study found 2,484 published papers related to RE and SO. The data extraction process of the SLR showed that (1) Latent Dirichlet Allocation (LDA) topic modeling is among the widely used ML algorithm in the selected studies and (2) precision and recall are amongst the most commonly utilized evaluation methods for measuring the performance of these ML algorithms. Conclusion. Our SLR study revealed that while ML algorithms have phenomenal capabilities of identifying the software requirements on SO, they still are confronted with various open problems/issues that will eventually limit their practical applications and performances. Our SLR study calls for the need of close collaboration venture between the RE and ML communities/researchers to handle the open issues confronted in the development of some real world machine learning-based quality systems.
AB - Context. The improvements made in the last couple of decades in the requirements engineering (RE) processes and methods have witnessed a rapid rise in effectively using diverse machine learning (ML) techniques to resolve several multifaceted RE issues. One such challenging issue is the effective identification and classification of the software requirements on Stack Overflow (SO) for building quality systems. The appropriateness of ML-based techniques to tackle this issue has revealed quite substantial results, much effective than those produced by the usual available natural language processing (NLP) techniques. Nonetheless, a complete, systematic, and detailed comprehension of these ML based techniques is considerably scarce. Objective. To identify or recognize and classify the kinds of ML algorithms used for software requirements identification primarily on SO. Method. This paper reports a systematic literature review (SLR) collecting empirical evidence published up to May 2020. Results. This SLR study found 2,484 published papers related to RE and SO. The data extraction process of the SLR showed that (1) Latent Dirichlet Allocation (LDA) topic modeling is among the widely used ML algorithm in the selected studies and (2) precision and recall are amongst the most commonly utilized evaluation methods for measuring the performance of these ML algorithms. Conclusion. Our SLR study revealed that while ML algorithms have phenomenal capabilities of identifying the software requirements on SO, they still are confronted with various open problems/issues that will eventually limit their practical applications and performances. Our SLR study calls for the need of close collaboration venture between the RE and ML communities/researchers to handle the open issues confronted in the development of some real world machine learning-based quality systems.
UR - http://www.scopus.com/inward/record.url?scp=85089026459&partnerID=8YFLogxK
U2 - 10.1155/2020/8830683
DO - 10.1155/2020/8830683
M3 - Review article
AN - SCOPUS:85089026459
SN - 1939-0114
VL - 2020
JO - Security and Communication Networks
JF - Security and Communication Networks
M1 - 8830683
ER -