摘要
An analytical wave propagation model is proposed in this paper for damping and steady state forced vibration of orthotropic composite plate structure by using the symplectic method. By solving an eigen-problem derived in the symplectic dual system of free bending vibration of orthotropic rectangular thin plates, the wave shape of plate is obtained in symplectic analytical form for any combination of simple boundary conditions along the plate edges. And then the specific damping capacity of wave mode is obtained symplectic analytically by using the strain energy theory. The steady state forced vibration of built-up plates structure is calculated by combining the wave propagation model and the finite element method. The vibration of the uniform plate domain of the built-up plates structure is described using symplectic analytical waves and the connector with discontinuous geometry or material is modeled using finite elements. In the numerical examples, the specific damping capacity of orthotropic rectangular thin plate with three different combinations of boundary condition is first calculated and analyzed. Comparisons of the present method results with respect to the results from the finite element method and from the Rayleigh–Ritz method validate the effectiveness of the present method. The relationship between the specific damping capacity of wave mode and that of modal mode is expounded. At last, the damped steady state forced vibration of a two plates system with a connector is calculated using the hybrid solution technique. The availability of the symplectic analytical wave propagation model is further validated by comparing the forced response from the present method with the results obtained using the finite element method.
源语言 | 英语 |
---|---|
页(从-至) | 318-339 |
页数 | 22 |
期刊 | Applied Mathematical Modelling |
卷 | 47 |
DOI | |
出版状态 | 已出版 - 7月 2017 |