A survey on deploying mobile deep learning applications: A systemic and technical perspective

Yingchun Wang, Jingyi Wang, Weizhan Zhang*, Yufeng Zhan, Song Guo, Qinghua Zheng, Xuanyu Wang

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

63 引用 (Scopus)

摘要

With the rapid development of mobile devices and deep learning, mobile smart applications using deep learning technology have sprung up. It satisfies multiple needs of users, network operators and service providers, and rapidly becomes a main research focus. In recent years, deep learning has achieved tremendous success in image processing, natural language processing, language analysis and other research fields. Despite the task performance has been greatly improved, the resources required to run these models have increased significantly. This poses a major challenge for deploying such applications on resource-restricted mobile devices. Mobile intelligence needs faster mobile processors, more storage space, smaller but more accurate models, and even the assistance of other network nodes. To help the readers establish a global concept of the entire research direction concisely, we classify the latest works in this field into two categories, which are local optimization on mobile devices and distributed optimization based on the computational position of machine learning tasks. We also list a few typical scenarios to make readers realize the importance and indispensability of mobile deep learning applications. Finally, we conjecture what the future may hold for deploying deep learning applications on mobile devices research, which may help to stimulate new ideas.

源语言英语
页(从-至)1-17
页数17
期刊Digital Communications and Networks
8
1
DOI
出版状态已出版 - 2月 2022
已对外发布

指纹

探究 'A survey on deploying mobile deep learning applications: A systemic and technical perspective' 的科研主题。它们共同构成独一无二的指纹。

引用此