摘要
Fourier ptychography microscopy (FPM) is a recently emerged computational imaging method, which combines the advantages of synthetic aperture and phase retrieval to achieve super-resolution microscopic imaging. FPM can bypass the diffraction limit of the numerical aperture (NA) system and achieve complex images with wide field of view and high resolution (HR) on the basis of the existing microscopic platform, which has low resolution and wide field of view. Conventional FPM platforms are constructed based on basic microscopic platform and a scientific complementary metal–oxide–semiconductor (sCMOS) camera, which has ultrahigh dynamic range. However, sCMOS, or even the microscopic platform, is too expensive to afford for some researchers. Furthermore, the fixed microscopic platform limits the space for function expansion and system modification. In this work, we present a simply equipped FPM platform based on an industrial camera and telecentric objective, which is much cheaper than sCMOS camera and microscopic platform and has accurate optical calibration. A corresponding algorithm was embedded into a conventional FP framework to overcome the low dynamic range of industrial cameras. Simulation and experimental results showed the feasibility and good performance of the designed FPM platform and algorithms.
源语言 | 英语 |
---|---|
文章编号 | 4913 |
期刊 | Sensors |
卷 | 19 |
期 | 22 |
DOI | |
出版状态 | 已出版 - 2 11月 2019 |