摘要
For the mimicry of human skin, one of the challenges is how to detect and recognize different stimulus by electronic device, while still has the ability of skin self-recovery at the same time. Because of the excellent elasticity and flexibility, strong self-healing ability, in this paper, we reported a bifunctional self-healing e-skin with polyurethane (PU) and polyurethane@multiwalled carbon nanotubes (PU@CNT) as the sensing materials by integrating a resistance temperature sensor on top of a capacitive pressure sensor on the same flexible cellulose nanocrystals@carboxylated nitrile rubber@polyethylenimine (CNC@XNBR) substrate. Studies found that each type of sensor exhibited fast and superior response to only the target stimuli. Meanwhile, due to the self-recovery properties of PU and CNC@XNBR, as-fabricated e-skin has the self-healing ability after damage and remains excellent sensitivity to temperature and pressure after healing. A 5 × 5 device array was also fabricated, which can simultaneously image the pressure and temperature distribution.
源语言 | 英语 |
---|---|
页(从-至) | 24339-24347 |
页数 | 9 |
期刊 | ACS applied materials & interfaces |
卷 | 12 |
期 | 21 |
DOI | |
出版状态 | 已出版 - 27 5月 2020 |
已对外发布 | 是 |