A robust bifunctional electrocatalyst for rechargeable zinc-air batteries: NiFe nanoparticles encapsulated in nitrogen-doped carbon nanotubes

Minxia Jiang, Zhi Tan, Minhua Cao*

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

12 引用 (Scopus)

摘要

Developing high-efficiency, low-cost, and stable bifunctional oxygen electrocatalysts is essential for the commercialization of rechargeable metal-air batteries. Herein, three-dimensional self-assembled microspheres via in situ encapsulation of NiFe alloy nanoparticles (NPs) into N-doping carbon nanotubes (NiFe@NCNTs) have been achieved through pyrolyzing a mixture of nickel-iron alkoxide and melamine. The as-prepared electrocatalyst exhibits outstanding oxygen reduction reaction (ORR) performance with a half-wave potential of 0.79 V and oxygen evolution reaction (OER) activity with a low overpotential of 330 mV at 10 mA cm−2. The eminent activity of NiFe@NCNTs is ascribed to high dispersion of active sites (zero-dimensional core-shell structure of NiFe@NC) and one-dimensional conductive network (NCNTs). Accordingly, the zinc-air battery assembled with NiFe@NCNTs as the air cathode exhibits a long cycling life of 200 h with a high energy efficiency of 65.6%. This work may shed new light on the design of advanced bifunctional electrocatalysts toward metal-air batteries.

源语言英语
页(从-至)15507-15516
页数10
期刊International Journal of Hydrogen Energy
46
29
DOI
出版状态已出版 - 26 4月 2021

指纹

探究 'A robust bifunctional electrocatalyst for rechargeable zinc-air batteries: NiFe nanoparticles encapsulated in nitrogen-doped carbon nanotubes' 的科研主题。它们共同构成独一无二的指纹。

引用此