A review of methane-driven two-step thermochemical cycle hydrogen production

Tong Liu, Hongfei Zheng, Hongsheng Wang, Jian Wang, Zhaolong Wang, Hui Kong*

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

1 引用 (Scopus)

摘要

Solar thermochemical cycling is a promising approach to utilizing solar energy to produce H2 and CO, which can be further synthesized into liquid fuels via Fischer-Tropsch reactions, making storage and transportation easier. Despite the potential high theoretical efficiency, factors such as the high temperature and low oxygen partial pressure required for the reduction restrict the large-scale application of this technology. In the near-to-medium term, in order to accelerate the popularization and application of this technology, according to Le Chatelier's principle, the assisted reduction of methane can greatly reduce the demand for high-temperature materials and ultra-low oxygen partial pressure. However, the addition of methane will also bring additional challenges, such as carbon emissions and carbon deposition. Reducing the influence of factors such as material sintering and irreversible loss on system efficiency in the experiment will be essential for the development of this technology. This paper focuses on the methane-driven two-step thermochemical cycle hydrogen production process, summarizes its reaction mechanism, thermodynamic analysis, kinetic analysis, oxygen carrier material doping, and experimental research in detail, and comprehensively analyzes the effect of material properties and irreversible loss on the system. According to thermodynamic and kinetic analysis, rational selection and doping of metal oxygen carrier materials can effectively reduce the reaction temperature, improve gas production rates, and enhance structural stability. Analyzing and trying to reduce various irreversible losses of the system, such as reradiation energy loss, conduction energy loss, etc., and taking appropriate heat recovery measures will help to improve the system efficiency of the actual cycle. This paper would be valuable for the development of this technology and for achieving the goal of carbon neutrality.

源语言英语
文章编号142668
期刊Journal of Cleaner Production
466
DOI
出版状态已出版 - 10 8月 2024

指纹

探究 'A review of methane-driven two-step thermochemical cycle hydrogen production' 的科研主题。它们共同构成独一无二的指纹。

引用此