TY - JOUR
T1 - A Retinex-based network for image enhancement in low-light environments
AU - Wu, Ji
AU - Ding, Bing
AU - Zhang, Beining
AU - Ding, Jie
N1 - Publisher Copyright:
© 2024 Wu et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
PY - 2024/5
Y1 - 2024/5
N2 - Most of the existing low-light image enhancement methods suffer from the problems of detail loss, color distortion and excessive noise. To address the above-mentioned issues, this paper proposes a neural network-based low-light image enhancement network. The network is divided into three parts: decomposition network, reflection component denoising network, and illumination component enhancement network. In the decomposition network, the input image is decomposed into a reflection image and an illumination image. In the reflection component denoising network, the Unet3+ network improved by fusion CA attention is adopted to denoise the reflection image. In the illumination component enhancement network, the adaptive mapping curve is adopted to enhance the illumination image iteratively. Finally, the processed illumination and reflection images are fused based on Retinex theory to obtain the final enhanced image. The experimental results show that the proposed network achieves excellent visual effects in subjective evaluation. Additionally, it shows a significant improvement in objective evaluation metrics, including PSNR, SSIM, NIQE, and so on, when compared to the results in several public datasets.
AB - Most of the existing low-light image enhancement methods suffer from the problems of detail loss, color distortion and excessive noise. To address the above-mentioned issues, this paper proposes a neural network-based low-light image enhancement network. The network is divided into three parts: decomposition network, reflection component denoising network, and illumination component enhancement network. In the decomposition network, the input image is decomposed into a reflection image and an illumination image. In the reflection component denoising network, the Unet3+ network improved by fusion CA attention is adopted to denoise the reflection image. In the illumination component enhancement network, the adaptive mapping curve is adopted to enhance the illumination image iteratively. Finally, the processed illumination and reflection images are fused based on Retinex theory to obtain the final enhanced image. The experimental results show that the proposed network achieves excellent visual effects in subjective evaluation. Additionally, it shows a significant improvement in objective evaluation metrics, including PSNR, SSIM, NIQE, and so on, when compared to the results in several public datasets.
UR - http://www.scopus.com/inward/record.url?scp=85194147033&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0303696
DO - 10.1371/journal.pone.0303696
M3 - Article
C2 - 38787895
AN - SCOPUS:85194147033
SN - 1932-6203
VL - 19
JO - PLoS ONE
JF - PLoS ONE
IS - 5 May
M1 - e0303696
ER -