A reformative algorithm for compressed sensing sparse signal recovery based on smoothed L0 norm

Yongtian Zhang, Xiaomei Chen*, Chao Zeng, Kun Gao, Haitong Li

*此作品的通讯作者

科研成果: 书/报告/会议事项章节会议稿件同行评审

摘要

The SL0 algorithm for compressed sensing (CS) is an convex programming iterative reconstruction algorithm, which construct a smooth function to approximate the L0 norm and transform the NP-hard problem of minimization of the L0 norm into a convex optimization problem of the smooth function. Aiming at its shortcomings, this paper proposes a faster and more efficient reconstruction algorithm (CG-SL0), which uses the inverse trigonometric fraction function to approximate the L0 norm, and uses the conjugate gradient method to achieve optimization. Experimental results show that, the CG-SL0 algorithm has significant advantages in reconstruction quality and performance under the same test conditions.

源语言英语
主期刊名Ninth Symposium on Novel Photoelectronic Detection Technology and Applications
编辑Junhao Chu, Wenqing Liu, Hongxing Xu
出版商SPIE
ISBN(电子版)9781510664432
DOI
出版状态已出版 - 2023
活动9th Symposium on Novel Photoelectronic Detection Technology and Applications - Hefei, 中国
期限: 21 4月 202323 4月 2023

出版系列

姓名Proceedings of SPIE - The International Society for Optical Engineering
12617
ISSN(印刷版)0277-786X
ISSN(电子版)1996-756X

会议

会议9th Symposium on Novel Photoelectronic Detection Technology and Applications
国家/地区中国
Hefei
时期21/04/2323/04/23

指纹

探究 'A reformative algorithm for compressed sensing sparse signal recovery based on smoothed L0 norm' 的科研主题。它们共同构成独一无二的指纹。

引用此

Zhang, Y., Chen, X., Zeng, C., Gao, K., & Li, H. (2023). A reformative algorithm for compressed sensing sparse signal recovery based on smoothed L0 norm. 在 J. Chu, W. Liu, & H. Xu (编辑), Ninth Symposium on Novel Photoelectronic Detection Technology and Applications 文章 126171I (Proceedings of SPIE - The International Society for Optical Engineering; 卷 12617). SPIE. https://doi.org/10.1117/12.2664402