摘要
In this article, We analyze the h-version of the discontinuous Galerkin finite element method (DGFEM) for the distributed first-order linear hyperbolic optimal control problems. We derive a posteriori error estimators on general finite element meshes which are sharp in the mesh-width h. These error estimators are shown to be useful in adaptive finite element approximation for the optimal control problems. For the DGFEM we admit very general irregular meshes.
源语言 | 英语 |
---|---|
页(从-至) | 491-506 |
页数 | 16 |
期刊 | Numerical Methods for Partial Differential Equations |
卷 | 27 |
期 | 3 |
DOI | |
出版状态 | 已出版 - 5月 2011 |
指纹
探究 'A posteriori error estimators for optimal distributed control governed by the first-order linear hyperbolic equation: DG method' 的科研主题。它们共同构成独一无二的指纹。引用此
Xiong, C., & Li, Y. (2011). A posteriori error estimators for optimal distributed control governed by the first-order linear hyperbolic equation: DG method. Numerical Methods for Partial Differential Equations, 27(3), 491-506. https://doi.org/10.1002/num.20534