A Parabolic Monge-Ampère Type Equation of Gauduchon Metrics

Tao Zheng*

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

9 引用 (Scopus)

摘要

We prove the long time existence and uniqueness of solution to a parabolic Monge-Ampère type equation on compact Hermitian manifolds. We also show that the normalization of the solution converges to a smooth function in the smooth topology as t approaches infinity which, up to scaling, is the solution to a Monge-Ampère type equation. This gives a parabolic proof of the Gauduchon conjecture based on the solution of Székelyhidi, Tosatti, and Weinkove to this conjecture.

源语言英语
页(从-至)5497-5538
页数42
期刊International Mathematics Research Notices
2019
17
DOI
出版状态已出版 - 5 9月 2019
已对外发布

指纹

探究 'A Parabolic Monge-Ampère Type Equation of Gauduchon Metrics' 的科研主题。它们共同构成独一无二的指纹。

引用此