A Novel Robust Kalman Filter for Unmanned Ground Vehicles Positioning under GNSS Abnormal Measurements

Zhang Yin, Mengyin Fu, Kai Shen

科研成果: 书/报告/会议事项章节会议稿件同行评审

摘要

For unmanned ground vehicles (UGV), reliable and precise navigation solution is a main challenge in complex environment, especially when measurements of global navigation satellite system (GNSS) are abnormal. In order to address this challenge, we propose an algorithmic solution strategy and present a novel robust Kalman filter for UGV positioning via fusing information from GNSS and inertial navigation system (INS). Firstly, we review the positioning requirements of UGVs by analyzing the technical needs of continuously determining a vehicle's location on road and precise navigation of lane level. Secondly, a new robust algorithm of Kalman filter is designed to reduce the positioning errors of GNSS/INS integrated navigation system when GNSS signals are abnormal. Thirdly, the application of the proposed algorithm to UGV positioning is illustrated. Simulation results with real data sets gathered from road tests show that the new robust filter can help us to evaluate the information quality of measurement, and can further autonomously adjust the Kalman gain and error covariance estimation matrices online. As a result, the accuracy and robustness of integrated navigation with the new filter can be improved in GNSS-challenged environments.

源语言英语
主期刊名Proceedings of the 39th Chinese Control Conference, CCC 2020
编辑Jun Fu, Jian Sun
出版商IEEE Computer Society
3427-3432
页数6
ISBN(电子版)9789881563903
DOI
出版状态已出版 - 7月 2020
活动39th Chinese Control Conference, CCC 2020 - Shenyang, 中国
期限: 27 7月 202029 7月 2020

出版系列

姓名Chinese Control Conference, CCC
2020-July
ISSN(印刷版)1934-1768
ISSN(电子版)2161-2927

会议

会议39th Chinese Control Conference, CCC 2020
国家/地区中国
Shenyang
时期27/07/2029/07/20

指纹

探究 'A Novel Robust Kalman Filter for Unmanned Ground Vehicles Positioning under GNSS Abnormal Measurements' 的科研主题。它们共同构成独一无二的指纹。

引用此