TY - JOUR
T1 - A Novel Open-Loop Frequency Estimation Method for Single-Phase Grid Synchronization under Distorted Conditions
AU - Xiao, Furong
AU - Dong, Lei
AU - Li, Li
AU - Liao, Xiaozhong
N1 - Publisher Copyright:
© 2013 IEEE.
PY - 2017/9
Y1 - 2017/9
N2 - In this paper, a new open-loop architecture with good dynamic performance and strong harmonic rejection capability is proposed for single-phase grid synchronization under distorted conditions. Different from previous single-phase grid synchronization algorithms based on the phase-locked loop technique, the proposed method is to estimate the frequency and phase angle of the grid voltage in an open-loop manner so that fast dynamic response and enhanced system stability can be achieved. First, an open-loop frequency estimation algorithm is introduced under ideal grid condition. Then, it is extended to distorted grid voltages through the combination of the developed frequency estimation unit and a prefiltering stage consisting of a second-order low-pass filter and a cascaded delayed signal cancellation (DSC) module. In addition, a transient process smoothing unit is designed to achieve smooth frequency transients in cases where the grid voltage experiences fast and large changes. The working principle of the new frequency estimation algorithm and the developed single-phase grid synchronization approach is given in detail, together with some simulation and experiment results for verifying their performance.
AB - In this paper, a new open-loop architecture with good dynamic performance and strong harmonic rejection capability is proposed for single-phase grid synchronization under distorted conditions. Different from previous single-phase grid synchronization algorithms based on the phase-locked loop technique, the proposed method is to estimate the frequency and phase angle of the grid voltage in an open-loop manner so that fast dynamic response and enhanced system stability can be achieved. First, an open-loop frequency estimation algorithm is introduced under ideal grid condition. Then, it is extended to distorted grid voltages through the combination of the developed frequency estimation unit and a prefiltering stage consisting of a second-order low-pass filter and a cascaded delayed signal cancellation (DSC) module. In addition, a transient process smoothing unit is designed to achieve smooth frequency transients in cases where the grid voltage experiences fast and large changes. The working principle of the new frequency estimation algorithm and the developed single-phase grid synchronization approach is given in detail, together with some simulation and experiment results for verifying their performance.
KW - Delayed signal cancellation (DSC)
KW - frequency estimation
KW - grid synchronization
KW - phase-locked loop (PLL)
KW - transient process smoothing (TPS)
UR - http://www.scopus.com/inward/record.url?scp=85029533124&partnerID=8YFLogxK
U2 - 10.1109/JESTPE.2017.2685620
DO - 10.1109/JESTPE.2017.2685620
M3 - Article
AN - SCOPUS:85029533124
SN - 2168-6777
VL - 5
SP - 1287
EP - 1297
JO - IEEE Journal of Emerging and Selected Topics in Power Electronics
JF - IEEE Journal of Emerging and Selected Topics in Power Electronics
IS - 3
M1 - 7885060
ER -