A novel Gaussian particle filter based on randomized quasi Monte Carlo for initial alignment in SINS

Junhou Wang*, Chunlei Song, Jiabin Chen, Zhide Liu, Xingtai Yao

*此作品的通讯作者

科研成果: 书/报告/会议事项章节会议稿件同行评审

2 引用 (Scopus)

摘要

The error model of marine strapdown inertial navigation system on the swaying base is nonlinear, while the azimuth angle is large. For the nonlinear error model, a new recursive Gaussian Particle filter based on randomized Quasi Monte Carlo is proposed. The randomized Quasi Monte Carlo methods use the weighted randomized low discrepancy particles to replace the weighted random samples, in order to avoid the possible gaps and clusters that arise from random sampling in Monte Carlo methods, and improve the sampling efficiency and calculation accuracy. The simulation experiment shows that the new approach obtains the better estimation performance in initial alignment of large azimuth misalignment on the swaying base of the marine strapdown inertial navigation system.

源语言英语
主期刊名2010 IEEE International Conference on Information and Automation, ICIA 2010
1245-1250
页数6
DOI
出版状态已出版 - 2010
活动2010 IEEE International Conference on Information and Automation, ICIA 2010 - Harbin, Heilongjiang, 中国
期限: 20 6月 201023 6月 2010

出版系列

姓名2010 IEEE International Conference on Information and Automation, ICIA 2010

会议

会议2010 IEEE International Conference on Information and Automation, ICIA 2010
国家/地区中国
Harbin, Heilongjiang
时期20/06/1023/06/10

指纹

探究 'A novel Gaussian particle filter based on randomized quasi Monte Carlo for initial alignment in SINS' 的科研主题。它们共同构成独一无二的指纹。

引用此