A nonlinear Schrödinger equation with Coulomb potential

Changxing Miao*, Junyong Zhang, Jiqiang Zheng

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

3 引用 (Scopus)
Plum Print visual indicator of research metrics
  • Citations
    • Citation Indexes: 3
  • Captures
    • Readers: 2
see details

摘要

In this paper, we study the Cauchy problem for the nonlinear Schrödinger equations with Coulomb potential $${\rm{i}}{\partial _t}u + \Delta u + {K \over {\left| x \right|}}u = \lambda {\left| u \right|^{p - 1}}u$$ with $$1 < p \le 5\,\,{\rm{on}}\,\,{\mathbb{R}^3}$$. Our results reveal the influence of the long range potential K∣x∣−1 on the existence and scattering theories for nonlinear Schrödinger equations. In particular, we prove the global existence when the Coulomb potential is attractive, i.e., when K > 0, and the scattering theory when the Coulomb potential is repulsive, i.e., when K ≤ 0. The argument is based on the newly-established interaction Morawetz-type inequalities and the equivalence of Sobolev norms for the Laplacian operator with the Coulomb potential.

源语言英语
页(从-至)2230-2256
页数27
期刊Acta Mathematica Scientia
42
6
DOI
出版状态已出版 - 11月 2022

指纹

探究 'A nonlinear Schrödinger equation with Coulomb potential' 的科研主题。它们共同构成独一无二的指纹。

引用此

Miao, C., Zhang, J., & Zheng, J. (2022). A nonlinear Schrödinger equation with Coulomb potential. Acta Mathematica Scientia, 42(6), 2230-2256. https://doi.org/10.1007/s10473-022-0606-x