A new S-shape specimen for studying the dynamic shear behavior of metals

Ali Arab*, Yansong Guo, Qiang Zhou, Pengwan Chen

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

6 引用 (Scopus)

摘要

A new S-shaped specimen geometry is developed in this study to investigate the shear behavior of materials under dynamic shear condition. Traditionally, hat-shaped geometry is used to study the dynamic shear of materials by a conventional split Hopkinson pressure bar apparatus. However, in this geometry, the force equilibrium on the two sides of the sample is difficult to fulfill, and the stress field in the shear region is not homogeneous. Hence, the calculated shear stress–strain curve from this geometry is not precise. To overcome this problem, the new S-shaped specimen is designed to achieve accurate shear stress–strain curve. This geometry can be used in a wide range of strain rates and does not require additional machining process for microstructure observation. The new S-shaped specimen is successfully coupled with digital image correlation method because of the flat surface. Digital image correlation results indicate that the fracture patterns of the new S-shaped specimen occur with maximum shear strains in the shear region in the middle of the sample. This result is also validated by finite element model simulation. The new S-shaped specimen geometry can be used to study the dynamic shear behavior of various metals.

源语言英语
文章编号838
期刊Metals
9
8
DOI
出版状态已出版 - 2019

指纹

探究 'A new S-shape specimen for studying the dynamic shear behavior of metals' 的科研主题。它们共同构成独一无二的指纹。

引用此

Arab, A., Guo, Y., Zhou, Q., & Chen, P. (2019). A new S-shape specimen for studying the dynamic shear behavior of metals. Metals, 9(8), 文章 838. https://doi.org/10.3390/met9080838