A new RBF neural network with GA-based fuzzy C-means clustering algorithm for SINS fault diagnosis

Zhide Liu*, Jiabin Chen, Chunlei Song

*此作品的通讯作者

科研成果: 书/报告/会议事项章节会议稿件同行评审

9 引用 (Scopus)

摘要

In this paper, a new radial basis function (RBF) neural network with fuzzy c-means clustering algorithm based on genetic algorithm (GA) is proposed for the fault diagnosis of gyroscopes and accelerometers of strapdown inertial navigation system (SINS). The fuzzy c-means algorithm (FCM) tends to fall into the local optimum. The fuzzy c-means clustering algorithm combined with GA (FGA) obtains the global optimal cluster centers. FGA is used to provide the optimal cluster centers for RBF neural network, and a second order learning algorithm is used to train the parameters and weights of RBF neural network. Experimental results show that the proposed RBF neural network with FGA quickly converges and effectively improves the diagnostic accuracy rate of SINS fault diagnosis.

源语言英语
主期刊名2009 Chinese Control and Decision Conference, CCDC 2009
208-211
页数4
DOI
出版状态已出版 - 2009
活动2009 Chinese Control and Decision Conference, CCDC 2009 - Guilin, 中国
期限: 17 6月 200919 6月 2009

出版系列

姓名2009 Chinese Control and Decision Conference, CCDC 2009

会议

会议2009 Chinese Control and Decision Conference, CCDC 2009
国家/地区中国
Guilin
时期17/06/0919/06/09

指纹

探究 'A new RBF neural network with GA-based fuzzy C-means clustering algorithm for SINS fault diagnosis' 的科研主题。它们共同构成独一无二的指纹。

引用此