A new hydrodynamic interpretation of liquid metal droplet motion induced by an electrocapillary phenomenon

Jiao Ye, Si Cong Tan, Lei Wang*, Jing Liu

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

22 引用 (Scopus)

摘要

The Marangoni effect, induced by the surface tension gradient resulting from the gradient of temperature, concentration, or electric potential gradient along a surface, is commonly utilized to manipulate a droplet. It is also the reason for unique behaviors of liquid metal such as moving, breathing, and large-scale deformation under an electric field, which have aroused tremendous interest in academics. However, liquid metal droplets are usually treated as solid marbles, which neglect their fluidic features and can hardly explain some unusual phenomena, such as a droplet under a stationary electric field that moves in the opposite direction in different solutions. To better clarify these discrepancies, this study reveals that the movement of liquid metal is directly driven by viscous forces of solution rather than interfacial tension. This mechanism was determined by analyzing flow characteristics on a liquid metal surface. Additionally, experiments with liquid metal free falling in solution, liquid metal droplet movement experiments on substrates with different roughness, and liquid metal droplet movement experiments under high current density were additionally conducted to verify the theoretical interpretation. This research is instrumental for a greater understanding of the movement of liquid metal under an electric field and lays the foundation for the applications of liquid metal droplets in pumping, fluid mixing, and many other microfluidic fields.

源语言英语
页(从-至)7835-7843
页数9
期刊Soft Matter
17
34
DOI
出版状态已出版 - 14 9月 2021

指纹

探究 'A new hydrodynamic interpretation of liquid metal droplet motion induced by an electrocapillary phenomenon' 的科研主题。它们共同构成独一无二的指纹。

引用此