A new ensemble clustering method based on dempster-shafer evidence theory and gaussian mixture modeling

Y. Wu*, Xiabi Liu, Lunhao Guo

*此作品的通讯作者

科研成果: 书/报告/会议事项章节会议稿件同行评审

3 引用 (Scopus)

摘要

This paper proposes a new method based on Dempster-Shafer (DS) evidence theory and Gaussian Mixture Modeling (GMM) technique to combine the cluster results from single clustering methods. We introduce the GMM technique to determine the confidence values for candidate results from each clustering method. Then we employ the DS theory to combine the evidences supplied by different clustering methods, based on which the final result is obtained. We tested the proposed ensemble clustering method on several commonly used datasets. The experimental results confirm that our method is effective and promising.

源语言英语
主期刊名Neural Information Processing - 21st International Conference, ICONIP 2014, Proceedings
编辑Chu Kiong Loo, Keem Siah Yap, Kok Wai Wong, Andrew Teoh, Kaizhu Huang
出版商Springer Verlag
1-8
页数8
ISBN(电子版)9783319126395
DOI
出版状态已出版 - 2014
活动21st International Conference on Neural Information Processing, ICONIP 2014 - Kuching, 马来西亚
期限: 3 11月 20146 11月 2014

出版系列

姓名Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
8835
ISSN(印刷版)0302-9743
ISSN(电子版)1611-3349

会议

会议21st International Conference on Neural Information Processing, ICONIP 2014
国家/地区马来西亚
Kuching
时期3/11/146/11/14

指纹

探究 'A new ensemble clustering method based on dempster-shafer evidence theory and gaussian mixture modeling' 的科研主题。它们共同构成独一无二的指纹。

引用此