摘要
As a regular neurodegenerative disease, Parkinson's disease (PD) brings great pain and heavy economic burden to patients. Peroxynitrite (ONOO-) have attracted great attention to be a neurotoxicity specie in the pathogenesis of PD. Therefore, understanding the physiological functions of ONOO- in PD disease is of great importance to the early diagnoses. Unfortunately, it still lacks effective method for detecting ONOO- in PD model. In this work, a highly sensitivity and selectivity near-infrared ratiometric fluorescent probe (named K-ONOO) was designed for tracking ONOO- in PD model. K-ONOO exhibited a unique ratiometric response toward ONOO- due to the fracture of the boronic acid ester group and the principle of ICT resulted in red-shifted spectra. K-ONOO exhibited a quantitative response to ONOO- (0–15 μM) with a low detection limit (212 nM). K-ONOO can successfully map the changes of endogenous ONOO- in vivo. The results demonstrated that an elevated degree of ONOO- is closely correlated with zebrafish under rotenone stimulation. More importantly, H2S may serve as a neuroprotectant, which helps regulate ONOO- overexpression and prevent oxidative stress-induced neurodegeneration. The visualization imaging of ONOO- based on K-ONOO provides an auspicious method for understanding the essential role of ONOO- during PD disease pathology and early diagnosis.
源语言 | 英语 |
---|---|
文章编号 | 131393 |
期刊 | Sensors and Actuators, B: Chemical |
卷 | 359 |
DOI | |
出版状态 | 已出版 - 15 5月 2022 |