TY - JOUR
T1 - A multi-objective coupling parameter hierarchical optimization framework for a novel dual-motor powertrain system of electric vehicle
AU - Lin, Cheng
AU - Liu, Huimin
AU - Yu, Xiao
AU - Xie, Peng
N1 - Publisher Copyright:
© IMechE 2024.
PY - 2024
Y1 - 2024
N2 - Collaborative optimization of the coupling parameters of powertrain is essential to improve the performance of electric vehicles. However, complex coupling relationships and multi-objective trade-offs bring challenges to traditional heuristic optimization algorithms, limiting the exploitation of system performance. To improve optimization accuracy and the performance of vehicles, a global parameter optimization framework for multi-power source systems is proposed. Specifically, the optimization framework consists of three layers, the middle and bottom layers respectively perform multi-disciplinary and multi-objective collaborative optimization of the coupling parameters to obtain a Pareto front formed by the optimal combination of parameters. Furthermore, the decision layer utilizes the Technique for Order Preference by Similarity to Ideal Solution to perform a comprehensive evaluation of the solution on the Pareto front to scientifically obtain the best solution and the weight coefficient range. The simulation results demonstrate that the optimized optimal solution improves dynamic performance by 15.77% while reducing operating costs by 7.37% compared to the initial parametric solution, resulting in a significant improvement in vehicle economy. Meanwhile, the parameter optimization design regularities of the dual-motor system are summarized.
AB - Collaborative optimization of the coupling parameters of powertrain is essential to improve the performance of electric vehicles. However, complex coupling relationships and multi-objective trade-offs bring challenges to traditional heuristic optimization algorithms, limiting the exploitation of system performance. To improve optimization accuracy and the performance of vehicles, a global parameter optimization framework for multi-power source systems is proposed. Specifically, the optimization framework consists of three layers, the middle and bottom layers respectively perform multi-disciplinary and multi-objective collaborative optimization of the coupling parameters to obtain a Pareto front formed by the optimal combination of parameters. Furthermore, the decision layer utilizes the Technique for Order Preference by Similarity to Ideal Solution to perform a comprehensive evaluation of the solution on the Pareto front to scientifically obtain the best solution and the weight coefficient range. The simulation results demonstrate that the optimized optimal solution improves dynamic performance by 15.77% while reducing operating costs by 7.37% compared to the initial parametric solution, resulting in a significant improvement in vehicle economy. Meanwhile, the parameter optimization design regularities of the dual-motor system are summarized.
KW - Dual-motor powertrain
KW - collaborative optimization
KW - coupling parameter
KW - multi-objective
UR - http://www.scopus.com/inward/record.url?scp=85200005134&partnerID=8YFLogxK
U2 - 10.1177/09544070241257556
DO - 10.1177/09544070241257556
M3 - Article
AN - SCOPUS:85200005134
SN - 0954-4070
JO - Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering
JF - Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering
ER -